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ABSTRACT /\\
[1607 /

Since 1959, measurements of upper atmospheric winds have been made
from Wallops Island, Virginia, utilizing the sodium vapor technique. To
date, measurements from 2Z different vapor trails have been analyzed. In
the region 85 to 135 km, the measurements show a relation which is cyclic
with time. The data have been analyzed in terms of cyclic components with
periods of 24-hours, 12-hours, and 8-hours. A new picture of the wind

W

structure at these altitudes is proposed.
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SECTION 1

INTRODUCTION

During the past four years, the sodium vapor technique has been
used to measure upper atmospheric winds from Wallops Island, Virginia.

The method has been completely described elsewhere.(l-A)

Briefly,
winds are derived from the rate of motion of a trail of sodium vapor
ejected from a rocket during twilight. Resonance scattering of sun-
light of the D-line emission provides sufficient brightness for the
trail to be photographed during twilight. Triangulation techniques
are used to determine exact trail position from simultaneous photo-
graphs taken at widely separated known locations. The data is re-

duced by an analog method which allows very precise wind determina-

tions at height intervals as small as desired.

Results from a total of 22 different trails are reported here.
About half of these have previously been published.(5’6) The
remainder have received only limited distribution in contractual re-
ports.(2’7’8) The altitude range of the data varies for different
trails, with the upper limit determined by rocket performance. Three
types of rockets have been used: Nike-Cajuns which reach about 140 km,
Nike-Apaches which usually attain about 180 km, and Nike-Asps which

have reached 220 km. The lower limit of observations is often

determined by atmospheric conditions and partial cloud cover.




Below about 80 km, chemical recombination of the atomic sodium is
rapid, and the trail is white in color rather than the characteristic
orange or red of sodium or lithium vapor. This white trail is more
affected by atmospheric attenuation at low elevation angles from
distant locations and generally persists for only a short time.
Photography of this portion is generally possible from close-in
sites, but often there is so much overlapping of the trail in the
viewing direction that accurate winds cannot be determined in the ob-
serving time available. Thus, although measurements have been made
from 50 km to 200 km, the largest number of measurements are in the
region 80 to 140 km. All of the data that have so far been obtained

are included in Appendix A.




SECTION 2

WIND DATA

2.1 CLASSIFICATION OF WIND PROFILES

Examination of the wind profiles shows that they may be grouped into
three general classes determined by the velocity variations at different
heights. Examples illﬁstrating this classification are shown in Figure 1.
Wind speed and wind direction (direction toward which the wind is.blowing)
are shown separately as functions of altitude. Photographs of these trails,

taken from the launch site, are shown in Figure 2.

Class I. The direction varies rapidly with height, but does not
change by more than 90°. Wind speed fluctuations with height are numerous,

but usually do not deviate by more than 40 m/sec.

Class II. The primary characteristic of these trails is a single
large-shear region which usually occurs between 100 and 110 km. In this
region a large directional change, usually 1800, occurs. Above and below
this region, the wind speed is small, sometimes near 0. The maximum speed

in the shear region is always large and often as great as 150 m/sec.

Class III. The characteristic of these trails is a continuous, spi-
raling change in direction with height. The wind speed gradually increasing

with height until a maximum of 120 to 150 m/sec is reached at about 110 km.




Above this level the speed decreases to about 80 m/sec and then, in most
cases, remains relatively constant at greater heights. The direction of

rotation of the spiral motion is clockwise, i.e., N-E-S-W, with height.

Of the 22 individual experiments discussed here, 7 belong to Class 1;
6 to Class II; and 8 to Class III. No seasonal preference is noted in any
group. There are about equal numbers of morning and evening measurements
in Class I. Class II has more morning than evening measurements, and

Class I1I has more evening than morning measurements.

2.2 COMPARISON WITH OTHER MEASUREMENTS

Wind measurements by other methods have been made for some regions
below 100 km. Several firings of rocket grenades and sodium vapor have
been made within a few minutes of each other. Generally, the winds obtained
are in good agreement except in regions of large shear. In these regions,
the grenade data give a value averaged over the height interval between
successive grenades and do not show all the details which the sodium
clouds show. Measurements up to about 60 km with small meteorological
rockets have been obtained on a routine basis from many locations.(g)
Again, general agreement is found with the sodium vapor trail measurements.
Most of the reported data above 90 km are from radar observations of ionized
meteor trails. Radar observations give valuable information about the peri-
odic wind components and their seasonal variations, but their height resolu-

tion is very much less than that of the sodium trail measurements. The

radar data complement, rather than overlap, the sodium-trail data.



2.3 DIURNAL AND SEASONAL VARIATIONS

The present data are not well suited to the determination of seasonal
variations, for two reasons. The total number of observations is too small
for an analysis of seasonal variations; and almost one third of the data

were obtained during March and April.

The data are better suited to a study of diurnal variations since
about equal numbers of measurements have been made during morning and
evening twilight and the local times of sunrise and sunset vary by nearly
three hours through the year. However, no positive indications of diurnal
effects were found. Such effects have been observed by radar measurements
of ionized meteor trails at Jodrell Bank, England,(lo) and Adellaide,
Australia,(ll) but their amplitudes are very small compared with the ampli-
tude of the non-periodic component of the wind. The best opportunity to
detect cyclic variations from the present data came as a result of a series
of flights in April, 1961. Firings occurred at Wallops Island and Sardinia,

Italy(lz)

during the same period. The firings were planned to occur during
sequential twilights from both sites in order to investigate large scale
wind effects. The times at which the flights occurred and the time dif-

ference in hours is shown in Table 1. The latitude difference between

Wallops Island (37°50'N, 75°29'W) and Sardinia (39°36', 9°26'E) is small.

The wind velocity at any height may be represented on a polar plot by
a vector with length proportional to the speed and pointed in the direction

to which the wind is blowing. Such plots were made at selected heights for




TABLE 1

TIME OF OBSERVATION FOR THE APRIL 1961 SERIES

Approximate Approximate Time
Number Site LMT EST Difference

5 Wallops 19 April 04.6 hours 19 April 04.6 hours

8.9 hours
6 Sardinia 19 April 19.2 19 April 13.5
7 Sardinia 20 April 04.6 19 April 22.9 >
8 Wallops ‘20 April 19.2 20 April 19.2 22.?
9 Wallops 21 April 04.6 21 April 04.6 o




the five consecutive firings in April, 1961. It was found for each height
that the ends of these Vectors could be joined in sequence by a continuous,
smooth curve rotating from north to west. During September 1961 and March
1962, observations during sequential twilights were obtained from Wallops
Island with time difference of about 11 hours. Other sequential measure-
ments were also obtained at SardiniaSIB) Vectors from these additional

flights were placed on the previously drawn plots and the new vectors were

found to terminate on the same curves.

If all sequential measurements could be represented in this manner,
the curve must be a closed loop. Continuation of the curve to close the
figure was possible at all heights. The resulting figures had the same
general character at all heights. Data from other firings which occurred
at random intervals, were added to the figures. Final data plots for
selected altitudes are shown in Figures 3 through 31. The numbers accom-
panying each observed point identify the observation by date, time, and
place, and are tabulated in Table 2. It should be noted that the altitude
difference between most of the figures is only 1.25 km, and that significant
variations occur over such intervals. The regions of high shear would not
be observed if the height determinations were less precise or if the data

were averaged over height intervals much greater than 1 km.

Above about 135 km, the closed loop figures could not be drawn. Either
there are not enough points to determine the shape, or such patterns do not
exist at these heights. Measurements of winds above 135 km are shown in
Appendix A. 1t is apparent that if such representations exist, they include

a large prevailing component directed toward the south.




N =

12
13
14
15
16
17
18
19
20

21
22
25
26
27
23
24

Date
(1959)

17 August
18 November

(1960)

24 May
9 December

(1961)

19 April
19 April
20 April
20 April
21 April
7 September
8 September
16 September
17 September

(1962)

1 March
2 March
23 March
27 March
17 April
6 June
7 November
30 November
5 December

(1963)

20 February
21 February
20 May
21 May
21 May
23 May
24 May

TABLE

2

Twilight

AM
PM

PM
AM

AM
PM
AM
PM
AM
PM
AM
PM
AM

PM
AM
PM
PM
AM
PM
AM
AM
PM

PM
PM
PM
AM
PM
™
PM

Sardinia

Sardinia

Sardinia

Sardinia

Sardinia
Sardinia
Sardinia

Range of
Height in km

140-220
94-163

84-169
90-138

92-154
83-183
108-189
81-165
82-162
90-200
100-200
78-146
96-172

71-126
65-127
59-140
80-118
76-191
56-137
68-152
77-157
83-138

58-151
83-164
94-195
98-200
84-205
81-205
84-170




Below about 85 km, data are again insufficient to establish such
. . (14-16)
patterns or to determine whether they exist. Numerous measurements
in this region have been made by other methods and a large scale, general
circulation has been established in which the prevailing direction is

(17-19) .

toward the east in winter and toward the west in summer.
measurements made with sodium clouds are not inconsistent with this result,

however, the individual measurements show large fluctuations.




SECTION 3

MATHEMATICAL REPRESENTATION OF THE WIND DATE

The form of the data figures suggests thay they could be represented
by a combination of cyclic components. The radar meteor data show that
components with periods of 24-hours, l12-hours, and 8-hours are present in
the region 85 to 105 kms. It is convenient to represent these components
as vectors in a complex plane so that the magnitude and phase are easily

separated.
3.1 USE OF THE COMPLEX VARIABLE

Let u, and v denote the components of the wind in the north an west
directions respectively. Then, a vector, W, in the complex (u, v) plane

may be written
W=u+iv = W exp[i ¢]

where W represents the wind speed, and ¢ the wind direction, measured
counter-clockwise from the direction north. W and ¢ are related to u and

v by

W=x (u2 + vz); ¢ = t:an_1 %

10




3.2 ©PREVAILING WINDS
If the wind over a given region has a constant or slowly varying
component, this is represented by a complex function

ﬁ;(z,t) = uo(z,t) + ivo(z,t) = Wo(z,f) exp[i ¢o(z,t)]

where z denotes the height and t the time.
3.3 CYCLIC COMPONENTS
Setting 2%/w equal to the 24-hour period of the earth's rotation gives
ﬁl =W, expli(ot - 81)]

for a component with this period.

Similarly, winds with 12- and 8-hour periods are represented respec-

tively by

=|
[

2 W2 exp[i(2wt - 62)]

W3 W3 expl[i(3wt - 53)] s

the B's are phase angles to be discussed later. The resultant wind, neglect-

ing components with periods of less than 8 hours, is then

11




ﬁ=wo exp[-i8_J+W, exp[i(wt-5,)]+W, exp[i(20t - 5,) ] +W, exp[i(3wt-5,)]

1 3
3

= j{: wj (t) exp[i¢j (t) ]
j=0

The eight quantities, Wj’ ¢j(j =0,1,2,3), determine the magnitude
and directional character of the wind with time. In general, both W(t),
the magnitude of the resultant wind, and ¢(t), its phase, may be compli-
"cated functions of time. However, the mathematical representation depends
upon only three of the four phase angles ¢j since the choice of zero time

is arbitrary.
3.4 ANALYSIS OF DATA FIGURES

The observed wind vectors at specific heights were plotted and the
resulting curves were analyzed to determine the 12-hour, 8-hour and pre-
vailing components. To accomplish this, a large number of computed model
figures were drawn using a wide variety of values for the W's and %°'s.
Some examples of these model figures are shown in Figures 32 through 36.
The observed patterns were then matched to the model figures and values of
the W's and d's were obtained for a specific case by scaling the data
figures to best fit the most appropriate model. Wo and 60 were read di-
rectly as a difference between the position of the origin in the model
and observed figures. Phase angles 61 and 62 were also determined by
direct comparison of model and data figures. The ®'s were considered as
a phase lag between components so that the direction of the prevailing

component, could be written positive when measured in the generally used

12




clockwise direction from north. Also, it should be noted that although
the phase angles 81 and 62 are associated with the 24-hour and 12-hour
components in this analysis, the relationship is not unique. The models
could have been computed using phase differences between any two of the
three cyclic components. However, the §'s show the zero-time phase dif-
ference between one component and the other two and how they all vary with
height, The ®'s were determined from the orientation of the figures and
by the relative position of points of intersection of the curves. The
intersecting points were determined from a group of model figures in which
62 was approximately correct. The direction of the points of intersection

was plotted for varying values of d The directions of the intersections

1
on the data figures were then read and corresponding values for 61 were
taken from a computed plot similar to the one shown in Figure 37. It can
be seen that phase determination is good in some regions, but not well
defined in others. Magnitude variations also affect the relative position

of intersecting points, so phase determination in regions of rapidly

changing magnitude is less certain.

In order to determine the magnitude of the cyclic components, the
distance to selected points on the model was determined in terms of the
direction cosines of the various components. The corresponding distances
on the data plots were measured and values for the W's were determined by
simultaneous solution of the cosine equations. Measurements were taken
where the figures were best defined by data and usually between two points

on the curve so that the exact location of the origin was not critical.

13




The measured values of the W's and &'s are tabulated on each data
plot in Figures 3 through 31. The altitude variations are shown in
Figures 38 through 42, which were drawn from point to point with no attempt
to smooth them. In some instances, more than one computed model might have
been used. In such cases, the phase was determined from a model with magni-
tudes close to the obserﬁed and which fit best with those above and below.
Small uncertainties in phase have negligible effects on the magnitudes of
the cyclic components, although they may introduce errors in determination
of small prevailing components since the position of the origin in the
computed models is effected by the relative phase and magnitude of the

components. The difference in phase between two of the components, d, -

1 2’

is shown as a function of height in Figure 43.
3.5 REMARKS

(1) At each height, the observed wind vectors define a pattern which
is accurately reproduced by a theoretical figure composed of prevailing,

diurnal, semi-diurnal, and 8-hour components.

(2) The parameters that define the pattern vary smoothly with height
as shown in Figures 38 through 42. The magnitudes of all components increase
to a maximum between 100 and 110 km, and the phase angles change rapidly in
this region. This is also the region where the large shears occur most

frequently.

14



(3) The 8-hour component is dominant at all heights. Sometimes its
magnitude is twice that of the semi-diurnal component. The diurnal com-
ponent is small below about 95 km, but increases above this height. The
prevailing component varies from near zero to a maximum of 40 m/sec at
105 km. The direction is generally toward the east except above 120 km

where it is toward the west.

(4) The motion of the wind vector at a given height is not accurately

periodic; that is, it is not true in general that

™y -

w{t + 24-hr) = WwW(t); d(t + 24-hr) = 5(t)

This fact shows up when time differences of the successive measurements in
Table 1 are compared with ''predicted'" time differences obtained from the
corresponding computed model. The time differences for the sequential
firings as indicated by the model figures are shown in Table 3. The rate

of rotation of the tip of the wind vector fluctuates by as much as a factor
of three at specific heights. However, average values for a range of heights
at a given time, as well as time averages for a given height, are close to
the predicted values. It follows that at a given instant of time, there is
no unique pattern for the height variation of W or &. Thus a large varia-

tion of the altitude profiles of the wind is to be expected and is observed.

3.6 DISCUSSION

Previous quantitative information about winds in the height range under

(10,20)

consideration comes mainly from the work of Greenhow and his co-workers

15




TABLE 3

TIME INTERVAL IN HOURS OF SEQUENTIAL
OBSERVATIONS AS OBTAINED FROM MODEL FIGURES.
(Occasionally two time intervals were possible)

Height Flight Number
km 5-6 6-7 8-9 25-26 75-8S 12-13 10-11
85 10
86.25 11
88.75 3
90 10 6
91.25 3 4
92.5 3 3 9
93.75 4 9 9
95 5 10 g 20
96.25 5 5 10 20
97.5 13 5 1 9 20
98.75 11 20 0 0 6
100 5 8 17 17 8 12
101.25 9 7 7 18 12 8
102.5 12 10 7 19 19 9
103.75 11 3(17) 3 10 18 10
105 5 9 10 13 11 6
106.25 11 11 5 13 8 4
107.5 7 13 4 14 13 8 5
108.75 7 10 10 19 14 14 5(12)
110 8 8 3 19 16 7 13
111.25 8 3 19(3) 17 17 11 16
112.5 6 3 19 9 10 0 15
113.75 7 3 1 10 10 0 10
115 7 3 2 11 11 23 14
116.25 7 4 1 10 10 23 23
120 6 4 0 23 10 10
125 5 3 10 2 10 17
130 5 4(9) 2 9 10 5
135 5 9 0 19 10 19
Actual
time in- g 9 9.4 9.4 8.5 10 11.5  10.4
terval
in hours

16




based on a radic-echo technique devised by Greenhow. This technique
enables one to measure the velocities of one or more short sections of a
suitably oriented ionization trail, such as are produced in large quanti-
ties in the height range 85-100 km by meteors. The accompanying absolute
height determinations have an uncertainty of +2 km; however, Greenhow
extended his technique to permit direct measurements of vertical gradients
of horizontal winds (wind-shear). From a very extensive set of observa-
tions, Greenhow and his co-workers determined, for every month of the year,
the height-averaged amplitudes and phases of the prevailing, diurnal, semi-
diurnal, and terdiurnal components of the horizontal wind in the height
range 90-94 km. They also determined the vertical gradients of these
quantities in the height range 90-100 km. Finally they determined the fre-
quency distribution of the amplitude of the horizontal wind and the frequency

distribution of the wind shear in the same height range.

The experimental results obtained by the radio-echo method indicate
that the aperiodic component of the horizontal wind is much larger, in the
height range under consideration, than the prevailing and periodic compo-
nents. However, owing to their limited height resolution, they coﬁtain
little information about the nature of the aperiodic component. This is
precisely the kind of information that the data presented here supply. On
the other hand, these data supply little information about strictly periodic

variations. The two experimental approaches are thus largely complementary.

On the basis of the radar data, the winds in the region 85-105 km have

been envisioned as made up of three contributions: a prevailing component,

17




similar to those that occur at lesser heights; a small tidal or thermally

driven component which, like the tidal winds at lesser heights, can be

anaylzed into a diurnal, a semi-diurnal and a terdiurnal component; and

an aperiodic component, much larger than the other two and characterized
. . . . -1 .o -1

by steep vertical gradients, sometimes exceeding 0.l sec = 100 m sec

-1 . . . .
km “). The radio-echo observations, as well as earlier optical observa-

(21)

tions of persistent meteor trails showed that the aperiodic winds had

a very narrow energy spectrum, Fourier components with a vertical wave-

length of less than 1 km being essentially absent. The aperiodic winds

could therefore not be described as turbulent in the technical hydrodynamic
. . . . (22)

sense. The wave like forms of persistent meteor trails led Hines to

attribute the aperiodic winds to upward-propagating waves combining the

properties of sound waves and internal gravity waves generated near the

surface of the earth. This interpretation has been widely accepted.

Although the picture just sketched seems to rest on a solid observa-
tional basis, it is by no means the only pictﬁre that is consistent with
the radio-echo data, which afford a very incomplete, statistical descrip-
tion of what is, at least numerically, the major component of the horizon-
tal winds. In addition, Hines's interpretation of the aperiodic winds
raises certain theoretical quegtions that have not yet been adequately
answered. For example: How are the travelling waves excited? Hines's
hypothesis requires an aperiodic driving mechanism that is considerably
more effective than the processes responsible for the periodic winds; pre-

(23)

sumably the absorption of insolation by water vapor and by ozone. What

is the nature of this mechanism?

18




The data from the sodium trails suggest a strikingly different picture.
The resultant wind at any height in the region 80 to 135 km may be repre-
sented by a prevailing component and cyclic components with periods of
24 hours, 12 hours, and 8 hours. The magnitudes of cyclic components
varies smoothly with height, but there is a ''phase anomaly". The lack of
correlation between the phase anomaly at different heights gives rise to

the variability of the W(z) and ¢(z) profiles.

On the present picture, virtually the entire amplitude of the wind
at a given height can be attributed to periodic, thermal driving forces.
There is no room in this
driving forces. The dominance of the 8-hour component should find a quanti-
tative explanation in the resonance characteristics of the atmosphere in
. . . . (24)
this height range. 1In this connection, we recall that Butler and Small
have recently shown that the amplitude of the 24-hour component is greatly

reduced, in comparison with the 12-hour component, because of the structure

of the atmosphere below 80 km.

The origin of the phase anomaly remains to be explained. We tenta-
tively attribute it to magnetohydrodynamic effects which enhance the
effective viscous coupling between adjacent layers. This mechanism is under

active consideration.
3.7 ADDITIONAL DATA

During 12 different twilight periods in 1959-1960 measurements were
. . .. (25 R o .
made at Eglin Air Force Base, Florida (latitude 29 N). Since none of
the chemical trails covered the entire 80-135 km region at one time, only

19




parts of the wind picture could be observed. Then during May 1963 and
December 1962, measurements were again made, but this time the trails
covered the 80-135 km region more completelyS26’27) Pre-publication
copies of the reports of these data were obtained and compared with the
Wallops Island results. The latter flights at Eglin used sodium vapor
trails at twilight and photo-chemical reaction during the night to obtain
four successive wind measurements within an 8-hour period. These sequen-
tial measurements are very similar to the Wallops data plots but also
appear different in both magnitude and phase. The amount of data is too

small for detailed comparison and the differences may be due to latitude

effects.

During Dedasbd6396 >, three consecutive twilight measurements were
made at Ft. Churchill, Canada (latitude 590N). The amount of data is much
too small to detect a pattern of the type developed at Wallops Island, but

large differences were found when they were compared to the Wallops data.

Recently, the sodium vapor method has been used at other locations,

but most of the data are not yet available.

It is perhaps significant that data from two trails at Wallops Island
are not contained in the closed loop figures. The observations of 17 August
1959 are not shown on the plots since the wind speeds were greater than the’
scale of the graph. Some of the data from 24 May 1960 although plotted, are
not contained in the figures. These observations were made during times of
very great solar activity and the upper winds were noticeably different from
the usually observed structure. These differences may be attributed to

disturbances in thermal driving forces.

20
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Figure 2.

(a) (b)

(c)

Photographs of the sodium trail taken 200 sec after launch,
from the launch site, on (a) 23 March 1962, (b) 7 November 1962,
and (c) 20 February 1963. Note the obvious difference in

appeararnce.
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Figure 3.

S

The pattern of wind structure as observed for a height of

85 km. The numbers refer to the dates listed in Table 2.
The geometric center of the figure is an open circle.

W) = 24-hour, Wy = l2-hour, W3 = 8-hour, and Wo = prevailing
components with accompanying phase angles, 5.
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Figure 4. The pattern of wind structure as observed for a height

of 86.25 km.
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Figure 5. The pattern of wind structure as observed for a height

of 88.75 km.
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Figure 6. The pattern of wind structure as observed for a height

of 90 km.
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Figure 7. The pattern of wind structure as observed for a height

of 91.25 km.
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Figure 8. The pattern of wind structure as observed for a height

of 92.5 km.
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Figure 9. The pattern of wind structure as observed for a height of

93.75 km.
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Figure 10. The pattern of wind structure as observed for a height
of 95 km.

30




N 0iCB138-29210

A\ \ ! / / /

) * 358° HEIGHT = 96.25 km
8, = 12 /

4 100 ’ N

+ 150 m/sec

Figure 11.

The pattern of wind structure as observed for a height
of 96.25 km.
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The pattern of wind structure as observed for a height

of 97.5 km.
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Figure 13. The pattern of wind structure as observed for a height
of 98.75 km.
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Figure 14. The pattern of wind structure as observed for a height of

100 km.
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Figure 15. The pattern of wind structure as observed for a height

of 101.25 km.
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Figure 16. The pattern of wind structure as observed for a height

of 102.5 km.
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Figure 17. The pattern of wind structure as observed for a height

of 103.75 km.
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Figure 18. The pattern of wind structure as observed for a height

of 105 km.
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Figure 19. The pattern of wind structure as observed for a height

of 106.25 km.
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Figure 20. The pattern of wind structure as observed for a height of
107.5 km.
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Figure 21.

The pattern of wind structure as observed for a height
of 108.75 km.

41




0I1CBiI3B8- 2980
NV v T T T 7

W, =20m/sec 8 = 352° HEIGHT = 110km
N\ w, =40 5, = 82 /]

Wy = 64

Wo = 20 8o = 260
N T /
N -
I~ —
L+ 4 —
o -
L~ ~
o N
¢ +l50 m/sec \
% N

Figure 22. The pattern of wind structure as observed for a height

of 110 km.
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Figure 23. The pattern of wind structure as observed for a height of

111.25 km.
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Figure 24. The pattern of wind structure as observed for a height
of 112.5 km.
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Figure 25. The pattern of wind structure as observed for a height of
113.75 km.
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Figure 26. The pattern of wind structure as observed for a height

of 115 km.
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Figure 27. The pattern of wind structure as observed for a height

of 116.25 km.
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Figure 28. The pattern of wind structure as observed for a height

of 120 km.

48




N 01C8138-2930

\

W,

A U A A

=10 m/sec 8.=4oo HEIGHT =125 km

AN

=30 5,220
=49
= 7 803 120 +

NN

\

\

[

+ 150 m/sec

Figure 29.

The pattern of wind structure as observed for a height
of 125 km.
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Figure 30. The pattern of wind structure as observed for a height
of 130 km.
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Figure 32. Theoretical figure drawn with W1 = 0, Wp = 20, and W3 = 45
M/sec; 5] = 0, 52 = 55, and 53 = O degress. The numbers
represent the time scale in hours.
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Figure 34, Theoretical figure drawn with W = 20, Wy = 40, and W5 = 70
M/sec; B1 = 270, By = 0, and 53 = O degrees. The numbers
represent the time scale in hours.
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Figure 35. Theoretical figure drawn with W, = 30, W, = 48, and W, = 66
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M/sec; B, = 270, &, = 0, and 33 = 0 degrees.
represent the time scale in hours,
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Figure 36. Theoretical figure drawn with W, = 10, W, = 40, and W, = 60
M/sec; 5; = 180, 5, = 0, and &g = 0 degrees. The numbers
represent the time scale in hours.
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theoretical figures similar to that of Figure 33.
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APPENDIX A

Wind measurements from 22 sodium vapor trails over Wallops Island
are included. A plot of both wind speed and direction of trail
transport is given as a function of altitude for each trail. The time,
date and altitude range is shown on each plot. The figure numbers

correspond to flight numbers in Table 2 of this report.
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of 17 August 1959.

68




230 ] T 01CBI39-1240

220}

I7 AUGUST 1959
210 }— AM

200 }—

©
O
l

@
o
I

HEIGHT (km)

3
o
l

160 —

150 |—

140 | | | |

100 200 300
E S W

DIRECTION OF TRANSPORT VECTOR

Z O
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Figure A.4b, Direction of transport vector as a function of height
for morning twilight of 9 December 1960.
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Figure A.5b, Direction of transport vector as a function of height
for morning twilight of 19 April 1961.
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Figure A.8b. Direction of transport vector as a function of height
for evening twilight of 20 April 1961.
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Figure A.9b., Direction of transport vector as a function of height
for morning twilight of 21 April 1961.
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Figure A.10a. Wind speed as a function of height for evening twilight
of 16 September 1961.
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Figure A.10b. Direction of transport vector as a function of height
for evening twilight of 16 September 1961,
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Figure A.11b., Direction of transport vector as a function of height
for morning twilight of 17 September 1961.
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for evening twilight of 1 March 1962,
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Figure A.13b., Direction of transport vector as a function of height
for morning twilight of 2 March 1962.
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Figure A.15b, Direction of transport vector as a function of height
for evening twilight of 27 March 1962,
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Figure A,16b. Direction of transport vector as a function of height
for morning twilight of 17 April 1962,
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Figure A.1l7b.

Direction of transport vector as a function of height
for evening twilight of 6 June 1962,
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Figure A.18a. Wind speed as a function of height for morning twilight
of 7 November 1962,
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Figure A.18b., Direction of transport vector as a function of height
for morning twilight of 7 November 1962,
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Figure A.19b. Direction of transport vector as a function of height
for morning twilight of 30 November 1962.

101




HEIGHT (km)

0iCB108-40160P

ISO 1 T | ¥ 1 1 L l 1 1 | L] 1

140 |— . —]

130 [~ ]

120 |- 5 DECEMBER 1962

PM

110 7 —

100 |- —

80 L
o) l20 150

WIND SPEED (m/sec)

Figure A.20a. Wind speed as a function of height for evening twilight
of 5 December 1962,

102




HEIGHT (km)

0I1CBIOB-4070P

150 | | |
5 DECEMBER (962

";() - F’hﬂ

130

120

=
I

/ |

100

90 -

80 1 | | | -
300 ) 100 200

W N E S
DIRECTION OF TRANSPORT VECTOR

Figure A.20b, Direction of transport vector as a function of height
for evening twilight of 5 December 1962,
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Figure A,21b. Direction of transport vector as a function of height
for evening twilight of 20 February 1963.
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Figure A.22a. Wind speed as a function of height for evening twilight
of 21 February 1963.
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Figure A.22b. Direction of transport vector as a function of height
for evening twilight of 21 February 1963.
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Figure A.23a. Wind speed as a function of height for evening twilight
of 23 May 1963.
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Figure A.24a. Wind speed as a function of height for evening twilight
of 24 May 1963,
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Figure A.24b. Direction of transport vector as a function of height
for evening twilight of 24 May 1963.
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